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A rheological equation of state for wood which allows for the running values of its porosity and humidity is
considered.

A great number of methods for improving various properties of natural wood are known. During modification,
wood samples can be subject to heating, drying, pressing, and resin or mineral-oil treatment. For example, in the ther-
momechanical method of modification of wood, bars are first dried at room temperature, with their humidity being
brought to the level of 12–20%, then they are pressed in special molds and are dried again in the chambers at a tem-
perature of about 110oC (the humidity of the samples is reduced in this manner to 10%); finally, they are allowed to
cool in molds at room temperature [1]. Improvement of the technologies of obtaining modified wood requires theoreti-
cal investigation of all stages of the production process. The central problem in modeling the regimes of pressing is
adequate description of the complex rheological behavior of wood.

The rheological properties of wood are determined by the special features of its anatomical and chemical
structure. Wood cells form a complex capillary-porous structure. Changes of the stressed state and temperature-mois-
ture effects cause transformations of the structure related to the special features of the dynamics of moisture in the
system of pores and capillaries. The material itself of the walls of a wood cell is an intricate polymeric complex.

For rheological description of wood materials use was made of models allowing, in different ways, for their
elastic, viscous, and plastic properties under stationary temperature-moisture conditions [1–4]. Employment of these
equations for modeling the process of pressing is difficult due to continuous changes in the structure of the wood.
Thus, in packing of the birch wood from the natural state with a density of D560 kg/m3 to a density of 1100 kg/m3

the volumetric content of the cavities of the vessels and fibers of the libriform decreases in the sample from D63 to
28% [2]. In this case, the humidity of the wood bar can increase 2–3 times [1]. It is known that a change of even
several percent in the humidity, when the limit of saturation of the cell walls is not reached, substantially informs us
about the mechanical behavior of wood. In modeling the processes of pressing under natural conditions, one must pre-
dict the evolution of the distributions of the porosity and initially nonuniform fields of humidity and temperature over
the entire volume of the sample.

By virtue of this, it is topical to construct phenomenological models which allow for the special features of
the capillary-porous structure and the multiphase character of wood. In this work, we have formulated a rheological
model which takes into account the running values of its humidity and porosity.

Wood is a three-phase system consisting of the woody substance, water which partially fills pores and capil-
laries, and a vapor-gas mixture. One can obtain continuum equations for the heterophase medium by volumetric aver-
aging of microequations for macroscopic parameters of each phase [5], proceeding from the methods of the mechanics
of multiphase media [6]. We note that this approach has not been applied earlier to study the processes of modifica-
tion of wood.

Assuming that pulsed transfer of momentum and energy in all phases can be neglected, we can represent the
total stress tensor of the considered heterogeneous system as a sum of the averaged stresses in the phases:

σkl
 = α1 sσ1

′
kl

t1 + α2 sσ2
′
kl

t2 + α3 sσ3
′
kl

t3 . (1)

If the deformations of microvolumes are small, the microdeformation tensor in the solid phase can be written as
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After averaging it can be represented in the following form:
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 is determined by the gradients of the mean displacements of the material, ε3

ij = 
1

2
 




∂ sh3′
j
t3

∂′xi
 + 
∂ sh3′

i
t3

∂′xj




; εf

ij
 is

the fictitious or effective tensor of deformations, which characterizes the displacement of the elements of the structure
skeleton [6]:
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i.e., the observed macrodeformations of the solid phase ε3
ij
 are composed of the deformations of the wood substance

sε3′
ij
t3 and the deformations of the wood skeleton εf

ij
, which lead to restructurization of the system of pores.

Following [6], we adopt the macroscopic hypothesis on the rheological behavior separately for the solid-phase
material and the structural skeleton of the system.

Allowing for the fact that wood cells are of polymeric nature, it is natural to take for description of the
stressed-deformed state of the wood material one of the models of a hereditary anisotropic medium [7]:
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To fictitious deformations there must correspond fictitious stresses. We construct the tensor of the latter in the
wood skeleton. For this purpose we consider stresses in the wood as in the medium with dual porosity and as in the
composite material representing a porous matrix (wood substance pierced by capillaries) and a system of macropores
in it. Heat and mass in the softwood are transferred, on the one hand, through the system of tracheids (a
D 20–50 µm), woodrays (a D 10 µm), bordered and simple pits (a D 1–10 µm) and, on the other hand, through micro-
capillaries in the cell walls [8]. Similarly, in the hard wood we distinguish the system of macropores to which vessels
(a D 30–400 µm), fibers of the libriform (a D 15–20 µm), and woodrays are referred. The capillaries appear in the cell
wall with a first portion of sorbed water, which disperses the wood substance, thus transferring it to the colloid state
[9]. In a dry cell wall, they are virtually absent. The diameter of the capillaries increases as the humidity changes and
it is a D 0.005–0.040 µm [8]. Thus, we can treat wood as two porous media, which are enclosed into each other and
possess intrinsic porosity, permeability, and other structural mechanical properties, and use the investigation methods
developed for these systems [10, 11].

Following [11], the total averaged stresses can be represented in the form

σkl
 = (1 − mp) sσcell

′
kl

tcell + mp sσp
′
kl

tp , (4)

where sσcell′kl
tcell are the averaged stresses in the cell wall pierced by capillaries and sσp′

kl
tp are the mean stresses in

the micropores.
The total averaged stresses in the cell walls are written as

sσcell
′
kl

tcell = (1 − mc.s) sσ3
′
kl

t3 + mc.s sσc.s
′
kl

tc.s , (5)

where sσc.s′
kl
tc.s are the mean stresses in the capillaries of the cell walls and sσ3′

kl
t3 are the mean stresses in the wood

skeleton.
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We denote the volumetric content of the vapor-gas mixture and the liquid in large pores by αp1 and αp2 and
in the capillaries by αc.s1 and αc.s2; then

sσp
′
kl

tp = αp1 sσ1
′
kl

t1 + αp2 sσ2
′
kl

t2 ,   sσc.s
′
kl

tc.s = αc.s1 sσ1
′
kl

t1 + αc.s2 sσ2
′
kl

t2 ,

αp1 + αp2 = 1 ,   αc.s1 + αc.s2 = 1 .

Assuming that the gas is ideal and it is sufficient to allow for the viscosity of the liquid only in interphase
interactions, we have sσ1′

kl
t1 = −p1δ

kl and sσ2′
kl
t2 = −p2δ

kl, p2 = p1 + pc.
The tensor of fictitious stresses for the porous system whose porosity is determined by macropores only, can

be calculated, as in [11], by the expression (1 − mp) [sσcell′kl
tcell − sσp′

kl
tp].

Using (5) and (4), we introduce the tensor of fictitious stresses related to the transfer of forces between the
structural elements of the skeleton:
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After transformations of (6), allowing for α1 = αp1mp + αc.s1mc.s and α2 = αp2mp + αc.s2mc.s, we can obtain the ex-
pression which generalizes the equation, similar to that in [11], to the case of unsaturated media:
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If mp < 1, i.e., the concentration of macropores is low, σf
kl C σkl + αc.s1p1δ

kl + αc.s2p2δ
kl. In the case where the

capillaries are virtually filled with moisture (αc.s1 D 0, αc.s2 D 1), we have σf
kl C σkl − p2δ

kl, i.e., the tensor of fictitious

stresses is determined in the same manner as for saturated cracked-porous media [6, 10, 11]. To the particular case of

the state of wood with a small content of liquid in macropores and the vapor-gas mixture in capillaries (αp2 D 0,

αc.s D 0) there correspond fictitious stresses of the form
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 . (8)

Following [6], we assume that the dependence of the tensor of fictitious stresses in the solid phase on the effective
tensor of deformations is similar to the rheological equation for the material of the wood skeleton:
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Equations (1)–(3), (7), and (9) determine the stressed-deformed state in the wood. The dependence of the tensor of
total stresses in the wood on macrodeformations can be obtained from the above-given relations:

εij
 = Πs

ijkl
 (0) 








σkl
 + α2p2δ

kl
 + α1p1δ

kl

α3
 + ∫ 

0

t

Ks
ijkl

 (t − τ) 
σij

 + α2p2δ
ij
 + α1p1δ

ij

α3
 dτ







 + Λs

ijΘ3 +

+ Πf
ijkl

 (0) 







σkl

1 − mp
 + β2p2δ

kl
 + β1p1δ

kl
 + ∫ 

0

t

Kf
ijkl

 (t − τ) 




σij

1 − mp
 + β2p2δ

ij
 + β1p1δ

ij


 dτ







 ,

650



β1 = 
mpαp1

1 − mp
 + αc.s1 ;   β2 = 

mpαp2

1 − mp
 + αc.s2 .

(10)

The rheological equation (10) involves explicitly the characteristics of humidity and porosity of the material.
We note that it can be generalized to the case where the wood substance and the wood skeleton do not possess the
property of the linearity of deformations.

We consider certain parameters involved in (10). We can estimate the range of variation of the coefficient
β1 if we approximately take the air content of the pine wood equal to 69, 66, and 32% at a humidity of 0, 12, and
100%, respectively, as the volumetric content of large pores [8]. The value of β1 cannot exceed 2.3. Allowing for this
and also for the fact that α2 < 1 and virtually realizable compression stresses are from 20 to 50 MPa, in (10) we can
neglect all the terms containing p1 (pressure of the vapor-gas mixture is close to atmospheric).

The capillaries of cell walls are virtually completely filled with water (in the absence of water they collapse);
therefore, αc.s1 D 0, αc.s2 D 1 and 1 − mp C α3 + uα2; u = γ ⁄ (γ + 1). The parameter γ is equal to the ratio of the volume
of water in the capillaries to the volume of water in the system of pores. The range of variation of γ is not bounded
from above. We have the value γ D ∞ is for absolutely dry (w D 0%) and room-dry (w D 8–12%) wood. For the wood
close to the state of fiber saturation a rough estimate gives γ D 0.01. This estimate allows for the fact that at
w D 30% the films of adsorption water are present on the surface of macropores. The coefficient β2 can be represented
as β2 = 1 + α2/[(α3 + uα2)(γ + 1)]. Consequently, 1 < β2 < 2 and the terms containing capillary pressure can be disre-
garded in (10) when the quantity p2 is much smaller than the compression stresses.

The value of the capillary pressure greatly depends on the degree of saturation of the porous medium, which
in turn changes with deformation. For determination of the capillary pressure we employ the Aver’yanov formula used
for calculating this quantity in grounds [12]:

 pc (θ) = − p0 
θ0

θ
 
1 − θ3

1 − θ0
3 ,   θ = 

α2

α2 + α1

 . (11)

Here p0 the capillary pressure at the saturation θ0 in the case of moistening of the porous medium only with adsorp-
tion water. The sorption abilities of the wood substance are such that the absorption of moisture by polymolecular ad-
sorption is predominant at a relative humidity of air from 0.2 to 0.7 and a humidity of the wood no lower than 5%
[8]. In calculations, we can take the value of saturation θ0 corresponding to a humidity of the wood of D6%. We note
that formula (11) is obtained for the porous system with a stationary system of pores and capillaries. In the wood, the
capillary structure experiences changes with increase in the humidity; by virtue of this the quantity p0(θ0) refers,
strictly speaking, to a somewhat different porous structure as compared to the quantity p2(θ). In calculations, it is
taken that

p0 = 
2Σ

Rchar
 C ,

where C = C(θ) is a certain saturation function and Rchar is the characteristic radius of microcapillaries of this type of
wood (Rchar < 10−7 m).

Experimental data must be used for determining the parameters of the functions of the creep rate and the val-
ues of the instantaneous compliance. We study the possibility of application of the constructed rheological model to
approximation of the experimental results [4].

Of the large series of experiments performed in [4], we consider the processes of creep in stepwise variation
of the compression stress along the fibers of the pine wood under stationary temperature conditions. The experiments
were made in one-axial loading following the conditions providing the uniformity of deformations. The experimental
data are given in [4] in the form of graphs for different values of the humidity of the samples and the compression
stresses.

In the deformation, the volume of the wood and, consequently, the values of the content of all phases change,
which makes calculations of the creep functions difficult. For one-dimensional and homogeneous deformations we have
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αi = αi0 
V0
V

 = αi0 
H0

H
 + αi0 

1

1 − ε
 ,   i = 1, 2, 3 . (12)

Substituting the law of stepwise variation of stress σ = σ⋅1(t) (1(t) is the Heaviside function) into (10), ne-
glecting the effect of the pressure of the vapor-gas phase, and using (12), we obtain the integral equation for deter-
mining the deformation, which contains the parameters dependent now on the initial values of the porosity and the
humidity of the wood. Allowing for the possible nonlinearity of the creep, under stationary temperature conditions we
have
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
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p2 = − p0 
α2 w=6%

α20

 (1 − ε) 
(1 − ε − α30)

3
 − α20

3

(1 − ε − α30)
3
 − (1 − ε)3 (α2 w=6%)

3 . (14)

For description of the deformation the exponential influence functions and weakly singular kernels of the Kol-
tunov creep are used [7]:

κj (t) = dj1 exp (− t ⁄ λj1) ,   κj = 
exp (− ηjt)

t
  ∑ 

n=1

∞

 
[Aj Γ (ωj)]

n
 t
ωjn

Γ (ωjn)
 ,   j = s, f . (15)

The stress function is selected in the form of the cubic dependence

Fj (σ) = bj1σ + bj2σ
3
 ,   j = s, f . (16)

The unknown parameters of the rheological model were determined from the condition of the minimum of the
function which for the first type of influence functions has the form

Φ (Is0, If0, ds1, λs1, df1, λf1, bs1, bs2, bf1, bf2, u, C) =  ∑ 

k=0

N

 


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εexp (tk) − εtheor (tk)
εexp (tN)





2

 . (17)

For the second type of influence functions the minimized function is constructed similarly. All the calculations have
been done with the help of a computer.

For calculations we need data on the initial volumetric content of the solid phase α30, moisture α20, and the
vapor-gas mixture α10 in the test samples. Given the initial values of humidity and porosity of the sample (they
change during compression due to the change in the structure of the pores), we can find these quantities from the fol-
lowing system of equations:

α10 + α20 + α30 = 1 ,   ρ = ρ1α10 + ρ2α20 + ρ3α30 ,   
w

100
 = 
ρ2

ρ3
 
α20

α30
 + 
ρ1

ρ3
 
α10

α30
 . (18)

We note that more accurate calculation requires replacement, in the last equation of (18), of the volumetric content of
the vapor-gas mixture by the value of the volume concentration of pure water vapor.
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If the density of the sample ρ is unknown (the values of the densities of the tested samples are not given in
[4]), we can find it from the humidity using the known empirical formulas [8]. Moreover, approximating the test val-
ues of the air content of the wood (for the pine wood these data are given in [8]), we obtain an approximate relation
which can be used instead of the second equation of (18):

α10 = 0.069 − 0.234 (w ⁄ 100) − 0.1361 (w ⁄ 100)2 .

The calculated values of the volumetric content of each of the three phases in the pine-wood sample before deforma-
tion at different humidities are given in Table 1.

The computer calculations allowed determination of the parameters of the one-dimensional model (13) for both
influence functions (15). The sum of the squares of deviations of the calculated values from experimental ones is less
than unity in all the cases. The optimum values of the rheological parameters for the creep kernels in the form of ex-
ponents are as follows: Is0 = 3.058⋅10−2 Pa−1, If0 = 4.179⋅10−12 Pa−1, ds1 = 2.711⋅10−6 sec−1, df1 = 5.992⋅10−6 sec−1,
λs1 = 2.177⋅105 sec, λf1 = 3.883⋅105 sec, bs1 = 1.184, bs2 = 7.222⋅10−17 Pa−1, bf1 = 1.506, and bf2 = −3.029⋅10−18

Pa−2. The rheological parameters of the equation with a Koltunov creep kernel are Is0 = 1.529⋅10−2 Pa−1, If0 =
1.478⋅10−11 Pa−1, ωs = ωf = 0.06, As = 3.972⋅105, Af = 8.085⋅10−5, ηs = 1.157⋅10−6 sec−1, ηf = 1.543⋅10−6 sec−1,
bs1 = 1.322, bs2 = 3.637⋅10−17 Pa−2, bf1 = 1.015, and bf2 = 1.559⋅10−17 Pa−2. The coefficient of surface tension is Σ
= 0.075 kg/sec2, and the characteristic radius of the capillaries is Rchar = 10−7 m. The fitting parameters for the cap-
illary pressure and the volumetric content of macropores for both versions of the functions of the creep rate are taken
to be the same: C = 0.5, 9, 14, and 22 and u = 1, 1, 0.3, and 0.1 at w = 6, 10, 15, and 20%, respectively.

Figure 1 shows the curves of deformation changes in loading along the fibers, which are obtained for the pine
wood both experimentally and by the suggested nonlinear hereditary rheological model with Koltunov influence func-
tions. Satisfactory approximation of experimental data on the creep for the considered cases of loading under the con-
ditions where the stresses do not exceed the limit of durable resistance (−σl.d.s = 32.57 MPa) and the initial humidity

TABLE 1. Calculated Values of the Initial Volumetric Content of the Phases in the Pine-Wood Sample

Absolute humidity, %
Volumetric content

solid phase water vapor-gas mixture

6 0.298 0.027 0.675

10 0.291 0.044 0.665

15 0.284 0.064 0.652

20 0.278 0.084 0.638

40 0.264 0.161 0.575

Fig. 1. Curves of the pine-wood creep in compression along the fibers at dif-
ferent values of the initial humidity of the sample (a) [1) w = 6%, 2) 10, 3)
15, and 4) 20 (−σ = 9.81 MPa)] and different levels of stress (b) [1) −σ =
9.81 MPa, 2) 19.62, and 3) 32.57; w = 10%]. Solid lines, theoretical calcula-
tion; points, experimental data [4]. t, months.
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of the samples varies from 6 to 20% is illustrated. We note that the choice of the kernel tells little about the mathe-
matical accuracy of the approximation of the experimental data. However, use only of the singular kernel, which does
not allow the jump of the derivative function of the creep rate on transition of the elastic deformations to viscoelastic
ones, is physically justified [7].

Thus, the rheological equation (10) and its generalization to the nonlinear region of deformation can be used
for theoretical investigation of the processes of aftereffect in the wood with allowance for the change in its porous
structure and moisture content.

NOTATION

n3, normal to the phase interface (external relative to phase 3); s...ti, averaging over the volume of the phase
i; s...tij, averaging of the interface between the phases i and j; dV, elementary macrovolume, m3; dSij, surface area of
the interface between the phases i and j inside dV, m2; x, coordinate; sij, specific surface area of the interface between
the phases i and j, m−1; α, volumetric content of the phase; w, humidity, %; θ, saturation; Σ, coefficient of surface
tension, kg/sec2; p, pressure, Pa; σkl, stress tensor, Pa; σ, compression stress along the fibers, Pa; εkl, deformation ten-
sor; ε, compression deformation along the fibers; Kijkl, tensor of the functions of the creep rate; Λkl, tensor of the co-
efficients of temperature expansion, K−1; A, ω, and η, parameters of the Koltunov influence functions; Πijkl(0), tensor
of instantaneous compliances, Pa−1; Ij0 (j = s, f), instantaneous compliance along the fibers, Pa−1; κ, function of the
creep rate along the fibers; Θ, difference between the current temperature and some initial value of it, K; ρ, density,
kg/m3; a, characteristic dimension of the pores, m; h, displacement, m; H, sample height, m; V, sample volume, m3;
mp, volumetric content of large pores in the wood material; mc.s, volumetric content of capillaries in the cell walls; F,
stress function; Γ, Euler gamma function; δkl, unit tensor; R, radius, m; t, time, sec; τ, time preceding the time of ob-
servation t, sec; bj1 and bj2, parameters of the cubic stress function; d and λ, parameters of the exponential influence
function; sec−1 and sec; Φ, minimized function; ∇ , differential operator; u = γ ⁄ (γ + 1); γ = αc.s

 ⁄ αp2. Subscripts: 1, 2,
and 3, vapor, water, and solid phase; i, j, phase number; f, effective (fictitious); s, wood substance; p, system of
macropores; cell, cell walls; c.s, capillary system; 0, initial; c, capillary; l.d.s, limit of durable resistance; exp, experi-
mental; theor, theoretical (values of deformations which satisfy the rheological equation (13)); char, characteristic; N,
the last point of the time interval. Superscripts: i, j, k, l, tensor components; ′, parameters which are mean within the
microvolume d′V << a3.
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